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Introduction

We learn meaningful, low-dimensional representations of concepts
by applying graph embedding techniques on colexification
networks.

Motivation

* State-of-the-art methods in computational historical linguistics
are generally unable to model or reconstruct semantic change

* Itis notoriously hard to quantify meaning cross-linguistically

* Modeling semantic relations between concepts reliably in a
“computer-friendly” way could help bridging the gap

Background

* Word embeddings have shown that various semantic
relationships can be efficiently modeled in a low-dimensional

vector space.
> ...but since they embed words, they are not fit for wide cross-

linguistic applications

» Colexification networks offer a cross-linguistic, concept-based
approach on semantics, encoding common pathways of semantic
shift

© ...but their network structure can not readily be processed by
downstream applications

Using graph embedding techniques, we can learn embedded
representations for concepts in colexification networks.
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(Mikolov et al., 2013) (Rzymski et al., 2020)

Materials and Methods

Colexification Data

* Three types of colexification (List, 2023) inferred from the
Intercontinental Dictionary Series (Key and Comrie, 2016):
> full colexification
> affix colexification
© overlap colexification
» Colexification network for each type of colexification
» Concepts defined by the CLLD Concepticon (List et al., 2025)

Graph Embedding Techniques

* ProNe (Zhang et al., 2019), Node2Vec (Grover and Leskovec, 2016)
& SDNE (Wang et al., 2016)

Training
* Train individual embeddings for each colexification network

* Combine embeddings from different colexification types as a
post-processing step (concatenation + PCA)

Experiments

1) Modeling Lexical Semantic Similarity

* Multilingual similarity ratings between word pairs, obtained from
MultiSimLex (Vulic et al., 2020)

* Calculate cosine similarities between corresponding concept
pairs

» Calculate Spearman’s r between similarities

2) Predicting Semantic Change

* Obtain historically attested semantic changes from DatSemShift
(Zalizniak et al., 2024)

* Negative sampling of random “changes”

* Train simple logistic regression classifier to tell apart true and
false shifts, based on the respective concept similarities

3) Predicting Word Associations

* Obtain word association data from the Edinburgh Association
Thesaurus (Kiss et al., 1973)

* Same experimental setup as previous task: Negative sampling,
prediction with simple logistic regression classifier

Baselines

* Various similarity metrics inferred from the graph directly
* Multilingual fastText vectors (Grave et al., 2018)

Results & Discussion

Results

* Embeddings learned with ProNE perform the best on average,
closely followed by Node2Vec; SDNE does not seem viable

* Concept embeddings outperform graph-based baselines in all
three tasks, and fastText embeddings in 2 of 3 tasks

* Almost identical patterns between tasks 2 and 3

» Affix colexifications lead to better embeddings on all three tasks

* Overlap colexifications are beneficial for predicting semantic
change and word association, but detrimental for modeling lexical
similarity (the same pattern holds for fastText embeddings!)
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Discussion

» Partial colexifications can capture semantic relations that are
rarely expressed by full colexification
» Affix colexification seems to capture a more direct relationship

between concepts than overlap colexification

Enriching embeddings with partial colexification data always leads
to better results than relying on full colexification data alone!




